

Metabolic Engineering

Metabolic Engineering of Knives Forks and Spoons

Oliver P. Peoples Metabolix Inc.

Metabolix "The PHA Technology Company"

- Integrated systems based approach covering the value chain
 - Molecular biotechnology
 - Metabolic engineering (hence "Metabolix")
 - Production strain development
 - PHA producing plants
 - Bioprocess engineering
 - Polymer science and engineering

PHB Co-Polymers: A Versatile Family

Key technical issues

- Reliable production of a copolymer inside a living cell
 - Control of polymer composition
 - Control of molecular weight
 - Control of polymer production vs. cell biomass
 - Design for manufacturing
 - Cost-effective process

- Genomics and proteomics
 - enable access to nature's diverse biocatalytic capabilities encoded by specific genes > Gene 1 Gene 2 Gene 3 Gene 4 Gene 5
- Precision genome engineering

Production host: bacteria or plant

MEWG, Metabolix Inc. February 3, 2005

Process Engineering

- Common fermentation process using standard equipment
 - Highly flexible
 - Highly reproducible
 - Scaled up to 60,000L
- Common recovery process, used for all polymer compositions
 - Process validated on industrial equipment at the tonnage scale
- Manufacturing cost
 - Cost reduced sufficiently to allow significant market penetration
 - Vegetable oil at 15-20 c/lb gives cost equivalence to dextrose at 8 10 c/lb

PHAs Are Alternatives to >50% of Polymer Used Now

- Thermoplastics
- Hot melt adhesives
- Coatings
- Pressure sensitive adhesives
 - "Very good plastics"
 - Form excellent films
 - Good barrier properties
 - Durable in use
 - Excellent UV stability
 - Biodegradable

Commercialization is Underway

RESOURCEFUL BY NATURE™

- Strategic alliance with ADM announced (11/3/04)
 - Implementation of Metabolix's proprietary manufacturing technology
 - Construct first commercial plant (50,000 tons)
 - Supports broad commercial roll-out, 50/50 JV

Metabolix

where nature performs $^{\text{\tiny TM}}$

Metabolic Engineering (ME)

Biological catalyst development based on living organisms

Metabolic engineering can be used to address the entire production process

- Fermentation scale-up
- Recovery processes
- Manufacturing operations
- Discovery
- Selection of the production host
- Lifecycle

ME Impacts Scale-Up

Yield (g/g)

 $\sim 35 - 40$ generations, $\sim 10^{17}$ cell divisions

10¹⁸ cells (300,000L)

Productivity and Yield with Scale-Up

MEWG, Metabolix Inc. February 3, 2005

ME Impacts Recovery Process

- Issue: to recover intracellular product results in high viscosity of lysed cells
- Approach: engineer production strains to express nuclease
- Nuclease activates on cell lysis
- Technology validates under production conditions

Nuclease strain (Patriots)

ME Impacts Manufacturing Operations

- Objective: Improve product yield on carbon
- Re-engineer E. coli central metabolism
- Achieved 70% of targeted yield improvement
- 50% yield improvement on oxygen
 - Reduces aeration requirements
 - Reduces heat load
 - Simplifies operations

Discovery: Expanding the PHA Monomer Family

Tissue engineered heart valves

MEWG, Metabolix Inc. February 3, 2005

ME - Selection of Production Hosts

- Goal: Coproduction of PHAs and biomass for fuels and energy
 - PHAs are the value-add that makes the overall system economic

Status:

- ~10% PHA levels achieved in model plants (Arabidopsis and tobacco)
- Inducible promoter technology demonstrated for PHA production

ME Impacts Lifecycle of Bioproducts

Fossil Energy Content (kJ/kg)

ME: Impacts Across the Biorefinery Value-Chain

High yielding and geographically **Land Use** optimized bio-energy crops Crops that can be efficiently harvested **Logistics** and densified with good storage stability Reduced recalcitrance, co-products that are Conversion readily extracted and high energy content Highly efficient microbes to produce **Fermentation** high-value co-products from mixed sugars Sustainable agriculture via crops with lower Life Cycle water, fertilizer and pesticide requirements

Metabolix Inc.

- Very large market fundamental to the global economy
- Technology aligned with emerging environmental trends
- Innovative and proprietary technology to produce plastics biologically from renewable resources (PHAs)
 - > Fermentation production is cost effective today
 - > PHA Bioplastics are very good materials
 - > PHA Bioplastics can be processed on existing equipment
- Broad and deep intellectual property position
- Metabolix will be the "PHA Technology Company"
 - Partnerships at several levels of the value chain

Metabolic Engineering

Thank You for Your Support!

Oliver P. Peoples Metabolix Inc.